Projekt zur

Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern

gefördert durch die

Telematikplattform für Medizinische Forschungsnetze e. V.

Fallzahlplanung Source Data Verification

Markus Neuhäuser

Institut für Medizinische Informatik, Biometrie und Epidemiologie am Universitätsklinikum Essen

Monitoring durch Source Data Verification (SDV)

kann Qualitätsbewusstsein wecken und damit Datenqualität verbessern.

Ziel ist es <u>nicht</u>, Einträge zu korrigieren (da ohnehin nur SDV auf Stichprobenbasis).

Literaturrecherche:

Keine durch emprirische Untersuchungen begründete

Empfehlungen

Klinische Studien

Monitoring ist grundsätzlich erforderlich (GCP), aber es gibt eine Reihe von Faktoren, die bei der Entscheidung über Art und Umfang des Monitorings eine Rolle spielen

- u.a. Phase der klinischen Prüfung
 - Anzahl und geographische Lage der Prüfzentren
 - zeitliche Dauer der Studie
 - Datenerfassung elektronisch oder Papierform

adaptives Monitoring

(Ose et al.: Low budget GCP – am Beispiel Monitoring. *Informatik*, *Biometrie und Epidemiologie in Medizin und Biologie* 2004; 35: 54-62)

häufigeres Monitoring bei niedriger Qualität, selteneres Monitoring bei hoher Qualität.

Pogash et al. (2001): bei mehr als 10 Abweichungen pro 10 000 Felder weitere 5% der CRFs

Zentren mit guter Datenqualität:

weniger große Stichprobe für die SDV

Datenqualität: anhand von Kenngrößen (Qualitätsscore)

und (wenn vorhanden) vorherigem SDV-Ergebnis

Umfang der SDV je Zentrum

Anzahl Patienten pro Zentrum nötig,

Patienten/Personen werden je Zentrum zufällig ausgewählt

Fallzahlplanung auf Basis des Anteils an Patienten/Personen mit mindestens einem fehlerhaften Eintrag (bzw. mind. x Fehleinträgen, oder mind. einem Fehleintrag in spezifizierten wichtigen Variablen)

→ Binomialverteilung kann angenommen werden, wird durch Normalverteilung approximiert $(1-\alpha)$ -Konfidenzintervall für den Anteil p:

$$(\hat{p} - \delta, \hat{p} + \delta)$$

erforderliche Fallzahl:

$$N \ge \frac{p(1-p)}{\delta^2} \cdot z_{\alpha/2}^2$$

 $z_{\alpha/2}$ Quantil der Standard-Normalverteilung, z.B. 1.96 für $\alpha = 0.05$.

Anteil (Annahme)	benötige Fallzahl für δ = 0.02
0.01	96
0.02	189
0.03	280
0.04	369
0.05	457
0.06	542
0.08	707
0.10	865
0.15	1225
0.20	1537
0.30	2017
0.40	2305
0.50 und mehr	2401

Fallzahl umso größer

- je größer der Anteil p,
- \bullet je kleiner δ .

z.B. p = 0.10:

benötige Fallzahl
3458
865
385
217
139
97

Zusätzlich zum Einfluss von p könnte man bei schlechter Datenqualität ein kleineres δ fordern

→ noch stärkere Fallzahlunterschiede zwischen Zentren mit guter und schlechter Datenqualität.

Ab der 2. SDV:

Anteil *p* aus der vorherigen SDV für die Fallzahlbestimmung bekannt

Statt Anteil an Patienten mit mindestens einem fehlerhaften Eintrag: Anteil fehlerhafter Einträge insgesamt

→ Fallzahlschätzung analog, sofern Unabhängigkeit vorausgesetzt wird

evtl. 2 Fallzahlschätzungen

→ maximale Anzahl ergibt die Fallzahl

Tiefe der SDV

Wie viele und welche Variablen sollen überprüft werden?

- Alle (bzw. alle neuen) Einträge
- Auswahl nach Wichtigkeit
- Je Gruppe (z.B. Labor) mindestens ein Wert

aber auch formale Fallzahlplanung für einen zu schätzenden Anteil pro Patient möglich (unter Annahme der Unabhängigkeit,

Binomialverteilung, ohne Approximation durch Normalverteilung)

z.B. $p = 0.10, \delta = 0.05$

100 Variablen insgesamt pro Patient

→ 59 der 100 Variablen überpüfen für 95%-Konf.-intervall

500 Variablen insgesamt → 109 der 500 Variablen

1 000 Variablen insgesamt → 122 der 1 000 Variablen

2 000 Variablen insgesamt → 130 der 2 000 Variablen

5 000 Variablen insgesamt → 135 der 5 000 Variablen

50 000 Variablen insgesamt → 138 der 50 000 Variablen

100 000 Variablen insg. \rightarrow 139 der 100 000 Variablen

Umfang der SDV je Zentrum

falls kleine Zentren existieren evtl. Verzicht auf Approximation durch Normalverteilung

→ Anzahl der Zentren berücksichtigen

z.B. 500 Patienten im Zentrum, p = 0.10, $\delta = 0.05$

109 statt 139 Patienten reichen aus.

Frequenz der SDV

Die aufgrund der Fallzahlplanung erforderliche SDV sollte gleichmäßig auf den zur Verfügung stehenden Zeitraum aufgeteilt werden.

Beispiel: 6 Monate Zeit für SDV mit Fallzahl 139

SDV bei 30 Patienten pro Besuch möglich

→ 5 SDV-Besuche gleichmäßig auf 6 Monate aufteilen.